PREPARATION OF PERALKYLCYCLOPENTASILANES, [R2Si]51)

Hamao WATANABE, Tsutomu MURAOKA, Yasuhiro KOHARA, and Yoichiro NAGAI

Department of Applied Chemistry, Faculty of Engineering, Gunma University

Kiryu, Gunma 376

Peralkylcyclopentasilanes $[R_2Si]_5$ (where R=Et, Pr, Bu and \underline{i} -Bu) were prepared by the reactions of corresponding dialkyldichlorosilanes (R_2SiCl_2) with lithium.

The chemistry of cyclopolysilanes is a subject of current interest. A six-membered cyclopolysilane, dodecamethylcyclohexasilane, and a four-membered one, tetramethyltetra-t-butylcyclotetrasilane, have been prepared by the reactions of dimethyl- and methyl-t-butyl-dichlorosilane with lithium, respectively. However, workable methods for preparation of peralkylcyclopentasilanes from the chlorosilane-Li system are not available, although Husk et al. reported that the reaction of di-t-butyldichlorosilane with Na-K alloy-biphenyl gave the corresponding cyclopentasilane in only ca. 0.3% yield. We have now found that the reactions of diethyl-, dipropyl- and dibutyl-dichlorosilane (I) with lithium gave five-membered ring systems (cyclopentasilanes) in reasonable yields.

5 :	R ₂ SiCl ₂	+	10 Li	(THF)	[R ₂ Si	i] ₅	+	10	LiCl
Ia;	R=Et				IIa;	R=Et			
Ib;	R=Pr				IIb;	R=Pr			
Ic;	R=Bu				IIc;	R=Bu			
Id;	R= <u>i</u> -Bu				IId;	R= <u>i</u> -B	u		

Typically, $^{3)}$ to a cold mixture of Li (0.83g) and THF (ice-water bath) was added, under N₂, a solution of dipropyldichlorosilane (9.3 g) in THF over 40 min with stirring. The mixture was stirred for 2.5 h at 0 °C and for 41 h at room temperature and then cyclohexane was added (50 ml). Work-up gave colorless fine crystals of IIb, mp 178-180 °C (from EtOH), 3.9 g (68%) (Table 1).

The present reaction provides a direct synthetic method for five-membered peralkylcyclopolysilane derivatives, 7) although indirect synthesis of permethylated

Table 1 Reactions of dialkyldichlorosilanes with	lithium ^a
--	----------------------

Reactants			Reaction time		е	
R ₂ SiCl	2	Li	0°	; r.t.	Product and yield	[mp] (°C) or c
R	(mmol)	(g.atom)	(h)	(h)		(bp °C/mm)
Et	0.05	0.12	3.5	; 43	(Et ₂ Si) ₅ (IIa) 72	(49) [60-70] (170-172/0.4)
Pr	**	11	2.5	; 41	(Pr ₂ Si) ₅ (IIb)	(68) [178-180] ^d
Bu	0.04	0.096	3.5	; 98		(56) (180-182/0.14)
<u>i</u> -Bu ^e	0.05	0.12	2.5	; 25	$(\underline{i}-Bu_2Si)_5(IId)$ 10	[>300] ^{d,f}

aIn THF (80 ml). bGLC yield using an external standard, n-alkane; isolated yield is given in parenthesis. Satisfactory elemental analyses and IR and PMR spectra were obtained for all compounds. from EtOH; in a sealed capillary. See ref. 8. fLiterature (ref. 5) mp 178-180 °C: see also ref. 9.

cyclopentasilane can be achieved by photolysis of dodecamethylcyclohexasilane. $^{10)}$ It is also worthwhile to note that the UV spectra of the cyclopolysilanes, IIa-d, are quite similar each other and close to that of $[Me_2Si]_5$, but significantly different from that of $[Me_2Si]_6$, $^{11)}$ and that the cyclopentasilanes obtained in the present work might be expected to serve as versatile precursors for various dialkylsilylenes $[R_2Si:]$.

References and notes

- 1) This paper was presented at the 41st Annual Meeting of the Japan Chemical Society, March 31-April 4, 1980 (Osaka); Abstracts II, p. 807, No. 1029.
- 2) K. Matsumura, L. F. Brough, and R. West, J.C.S. Chem. Comm., 1092 (1978).
- 3) M. Laguerre, J. Gunogues, and R. Calas, J.C.S. Chem. Comm., 272 (1978).
- 4) M. Biernbaum and R. West, J. Organometal. Chem., <u>131</u>, 179 (1977).
- 5) G. R. Husk, R. Wexler, and B. M. Kilcullen, J. Organometal. Chem., 29, C49 (1967).
- 6) H. Watanabe, N. Sakurai, K. Watanabe, and Y. Nagai, J. Organometal. Chem., 160, C1 (1978), and the references cited therein.
- 7) Five-membered perphenylcyclopolysilane, decaphenylcyclopentasilane: see H. Gilman and G. L. Schwebke, J. Am. Chem. Soc., 86, 2693 (1964).
- 8) In this reaction, octa-<u>t</u>-butylcyclotetrasilane, mp 219-222 °C (sealed capillary) (from EtOH), was also obtained in 36% yield (GLC).
- Other major discrepancies in the physical properties of this compound between our work and that of Husk et al. are as follows: IR (cm⁻¹) 1258w, 1212m [lit., 1255w, 1250s]; UV (c-C₆H₁₂) (nm) λ_{max} 260(sh) (ϵ ca.2000) [lit., 254.4 (ϵ 5900)]; PMR (CCl₄)(δ) 0.99(CH₃, d, J=6.3 Hz), 0.60-1.31(CH₂, broad), 1.82(CH, multiplet center) [lit., 1.97(CH₃, d, J=5 Hz), 0.77(CH₂, d), 1.64(CH, multiplet center)]. Husk et al. also gave two boiling points for this compound: bp 250 °C/4 mm in the text and 250 °C/0.4 mm in the experimental.
- 10) M. Ishikawa and M. Kumada, J. Organometal. Chem., 42, 325 (1972).
- 11) E. Carberry, R. West, and G. E. Glass, J. Am. Chem. Soc., 91, 5446 (1969).